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Introdcution to Convex Optimization



Easy and Hard Problems



Least squares (LS)

minimize ‖Ax − b‖2
2

A ∈ Rm×n, b ∈ Rm are parameters; x ∈ Rn is variable

• have complete theory (existence & uniqueness, sensitivity analysis . . . )

• several algorithms compute (global) solution reliably

• can solve dense problems with n = 1000 vbles, m = 10000 terms

• by exploiting structure (e.g., sparsity) can solve far larger problems

. . . LS is a (widely used) technology

CoSoC Seminar I, SNU, 9/23/2005 1



Linear program (LP)

minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . , m

c, ai ∈ Rn are parameters; x ∈ Rn is variable

• have nearly complete theory
(existence & uniqueness, sensitivity analysis . . . )

• several algorithms compute (global) solution reliably

• can solve dense problems with n = 1000 vbles, m = 10000 constraints

• by exploiting structure (e.g., sparsity) can solve far larger problems

. . . LP is a (widely used) technology
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Quadratic program (QP)

minimize ‖Fx − g‖2
2

subject to aT
i x ≤ bi, i = 1, . . . , m

• a combination of LS & LP

• same story . . . QP is a technology

• solution methods reliable enough to be embedded in real-time
control applications with little or no human oversight

• basis of model predictive control

CoSoC Seminar I, SNU, 9/23/2005 3



Convex optimization

minimize f0(x)
subject to f1(x) ≤ 0, . . . , fm(x) ≤ 0

x ∈ Rn is optimization variable; fi : Rn → R are convex:

fi(λx + (1 − λ)y) ≤ λfi(x) + (1 − λ)fi(y)

for all x, y, 0 ≤ λ ≤ 1

• includes LS, LP, QP, and many others

• like LS, LP, and QP, convex problems are fundamentally tractable
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The good news

convex optimization problems include handful classes of classical
optimization problems, e.g., LS, LP, QP, . . .
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The bad news

• LS, LP, and QP are exceptions

• most optimization problems, even some very simple looking ones, are
intractable, e.g., circuit yield maximization problem with contraints on
(dynamic & leakage) power and area

• example: NeoCircuit uses combination of randomization & simulated
annealing, but cannot find global optimal solution, and more
importantly takes enormous time; not practical for full-chip optimization
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Even worse news

very difficult and very easy problems can look quite similar
(to the untrained eye)
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Example: Polynomial minimization

minimize p(x)

p is polynomial of degree d; x ∈ Rn is variable

• except for special cases (e.g., d = 2) this is a very difficult problem

• even sparse problems with size n = 20, d = 10 are essentially intractable

• all algorithms known to solve this problem require effort exponential in n
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Example: Robust LP

minimize cTx
subject to Prob(aT

i x ≤ bi) ≥ η, i = 1, . . . ,m

coefficient vectors ai IID, N (ai,Σi); η is required reliability

• for fixed x, aT
i x is N (aT

i x, xTΣix)

• so for η = 50%, robust LP reduces to LP

minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . , m

and so is easily solved

• what about other values of η, e.g., η = 10%? η = 90%?
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Hint

{x | Prob(aT
i x ≤ bi) ≥ η, i = 1, . . . , m}

η = 10% η = 50% η = 90%
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That’s right

robust LP with reliability η = 90% is convex, and very easily solved

robust LP with reliability η = 10% is not convex, and extremely difficult

moral: very difficult and very easy problems can look quite similar
(to the untrained eye)
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What makes a problem easy or hard?

classical view:

• linear is easy

• nonlinear is hard(er)
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What makes a problem easy or hard?

emerging (and correct) view:

. . . the great watershed in optimization isn’t between linearity and
nonlinearity, but convexity and nonconvexity.

— R. Rockafellar, SIAM Review 1993
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Convex Analysis and Optimization



Convex analysis & optimization

nice properties of convex optimization problems known since 1960s

• local solutions are global

• duality theory, optimality conditions

convex analysis well developed by 1970s Rockafellar

• separating & supporting hyperplanes

• subgradient calculus
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What’s new (since 1990 or so)

• primal-dual interior-point (IP) methods
extremely efficient, handle nonlinear large scale problems,

polynomial-time complexity results, software implementations

• new standard problem classes
generalizations of LP, with theory, algorithms, software

• extension to generalized inequalities
semidefinite, cone programming

• emerging convex optimization programming in circuit area
generalized geometric programming, with theory, algorithms,

software, dual

. . . convex optimization is becoming a technology

CoSoC Seminar I, SNU, 9/23/2005 15



Applications and uses

• lots of applications
control, combinatorial optimization, signal processing,

circuit design, communications, . . .

• robust optimization
robust versions of LP, LS, other problems

• relaxations and randomization
provide bounds, heuristics for solving hard problems

CoSoC Seminar I, SNU, 9/23/2005 16



Recent history

• 1984–97: interior-point methods for LP

– 1984: Karmarkar’s interior-point LP method

• 1988: Nesterov & Nemirovsky’s self-concordance analysis

• 1989–: LMIs and semidefinite programming in control

• 1990–: semidefinite programming in combinatorial optimization
Alizadeh, Goemans, Williamson, Lovasz & Schrijver, Parrilo, . . .

• 1994: interior-point methods for nonlinear convex problems
Nesterov & Nemirovsky, Overton, Todd, Ye, Sturm, . . .

• 1997–: robust optimization Ben Tal, Nemirovsky, El Ghaoui, . . .
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New Standard Convex Problem Classes



Some new standard convex problem classes

• second-order cone program (SOCP)

• geometric program (GP) (and entropy problems)

• semidefinite program (SDP)

• generalized geometric program (GGP) (and circuit optimization
problems)

for these new problem classes we have

• complete duality theory, similar to LP

• good algorithms, and robust, reliable software

• wide variety of new applications

CoSoC Seminar I, SNU, 9/23/2005 18



Second-order cone program

second-order cone program (SOCP) has form

minimize cT
0 x

subject to ‖Aix + bi‖2 ≤ cT
i x + di, i = 1, . . . , m

with variable x ∈ Rn

• includes LP and QP as special cases

• nondifferentiable when Aix + bi = 0

• new IP methods can solve (almost) as fast as LPs
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Example: robust linear program

minimize cTx
subject to Prob(aT

i x ≤ bi) ≥ η, i = 1, . . . ,m

where ai ∼ N (āi,Σi)

equivalent to

minimize cTx

subject to āT
i x + Φ−1(η)‖Σ

1/2
i x‖2 ≤ bi, i = 1, . . . , m

where Φ is (unit) normal CDF

robust LP is an SOCP for η ≥ 0.5 (Φ(η) ≥ 0)
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Entropy problems

unnormalized negative entropy is convex function

− entr(x) =
n∑

i=1

xi log(xi/1
Tx)

defined for xi ≥ 0, 1
Tx > 0

entropy problem:

minimize − entr(A0x + b0)

subject to − entr(Aix + bi) ≤ 0, i = 1, . . . , m

Ai ∈ Rmi×n, bi ∈ Rmi
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Geometric program (GP)

log-sum-exp function:

lse(x) = log (ex1 + · · · + exn)

. . . a smooth convex approximation of the max function

geometric program:

minimize lse(A0x + b0)

subject to lse(Aix + bi) ≤ 0, i = 1, . . . ,m

Ai ∈ Rmi×n, bi ∈ Rmi; variable x ∈ Rn
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Monomial functions

x = (x1, . . . , xn): vector of positive variables

function f : R+n
→ R+ of form

f(x) = cxα1
1 xα2

2 · · ·xαn
n

with c > 0, αi ∈ R, is called monomial
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Posynomial functions

x = (x1, . . . , xn): vector of positive variables

function f : R+n
→ R+ of form

f(x) =
t∑

k=1

ckx
α1k
1 x

α2k
2 · · ·xαnk

n

with ck > 0, αik ∈ R, is called posynomial

like polynomial, but

• coefficients must be positive

• exponents can be fractional or negative
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Posynomial form GP

posynomial form GP:

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . , m

fi are posynomial; xi > 0 are variables

to convert to (convex form) GP, express as

minimize log f0(e
y)

subject to log fi(e
y) ≤ 0, i = 1, . . . ,m

objective and constraints have form lse(Aiy + bi)
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Solving GPs (and entropy problems)

• GP and entropy problems are duals (if we solve one, we solve the other)

• new IP methods can solve large scale GPs (and entropy problems)
almost as fast as LPs

• applications in many areas:

– information theory, statistics
– communications, wireless power control
– digital and analog circuit design
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Generalized geometric program (GGP)

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . ,m

gi(x) = 1, i = 1, . . . , p

fi are generalized posynomials, gi are monomials

• using tricks, can convert GGP to GP, then solve efficiently

• conversion tricks can be automated

– parser scans problem description, forms GP
– GP solver solves GP
– solution transformed back (dummy variables eliminated)
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What have we seen?

• convex optimization includes several classical optimization problems,
and many others

• takes trained eye to find problems which fits into convex optimization

• very efficient (and fast) algorithms and software developed for (large)
convex optimization problems
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Statistical Digital Circuit Optimization



Statistical parameter variations in circuits

• statistical variations in process

– random defects: random particles while chemical mechanical
polishing (CMP), chemical vapor deposition (CVD), physical vapor
deposition (PVD), etc.

– systematic defects: optical proximity correction (OPC), etc.

• statistical variations in environment: supply voltage, temperature, etc.

⇒ induces statistical variations in (physical) parameters, e.g., effective
length, width, oxide thickness, zero biased threshold voltage, mobility, etc.
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Statistical parameter variations in circuits

• statistical variation significantly affects performance in deep submicron
(DSM) regime

• statistical variation is very complex and extremely hard; modeling still
open

• some efficient statistical circuit analysis methods

• merely start exploring statistical design methods; design for
manufacturability (DFM), design for yield (DFY), design for testability
(DFT), etc.
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Ladner-Fisher 32-bit adder example

• minimize maximum delay with
constraints

• simplified RC delay model

• Pelgrom variation model
(15% σ/µ for min size devices)

• design variables:
device widths for 451 gates . . .

32


32


32


Schematic of Ladner-Fisher 32-bit adder
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Optimization results (nominal: no uncertainty)
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. . . around 2800 of 6400 total paths are critical
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Cost of statistical variation

Monte Carlo SSTA analysis of nominal optimal design
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Statistically robust design via new method

same circuit, uncertainty model, and constraints
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Statistically robust design via new method

Nominal delay 90% delay

Nominal design 45.4 53.6

Statistical design 46.3 46.9
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Nominal optimal versus statistical design
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In the second half of this talk

• introduce what generalized geometric program (GGP) is in detail

• show how we can

– model gate delay very accurately using generalized posynomials
– exactly cast nominal delay minimization problem into GGP
– use heuristic for statistical circuit design problem using GGP

when statistical static timing analysis (SSTA) is applied
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Why convex optimization?



Trade-offs in optimization

• general trade-off between generality and effectiveness

• generality

– number of problems that can be handled
– accuracy of formulation
– ease of formulation

• effectiveness

– speed of solution, scale of problems that can be handled
– global vs. local solutions
– reliability, no baby-sitting, no starting point
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Example: least-squares vs. simulated annealing

least-squares

• large problems reliably (globally) solved quickly

• no initial point, no algorithm parameter tuning

• solves very restricted problem form

• with tricks and extensions, basis of vast number of methods that work
(control, filtering, regression, . . . )

simulated annealing

• can be applied to any problem (more or less)

• slow, needs tuning, babysitting; not global in practice

• method of choice for some problems you can’t handle any other way
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Where convex optimization fits in

somewhere in between, closer to least-squares . . .

• like least-squares, large problems can be solved reliably (globally), no
starting point, tuning, . . .

• solves a class of problems broader than least-squares, less general than
simulated annealing

• formulation takes effort, but is fun and has high payoff
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Conclusions

• convex optimization includes several classical optimization problems,
and many others

• takes trained eye to find problems which fits into convex optimization

• very efficient (and fast) algorithms and software developed for (large)
convex optimization problems

• can cast circuit optimization problems into convex optimization
problems, e.g., GGP

• simple heuristic works very well for statistical digital circuit optimization
problem
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